TD 9: Fonctions usuelles

Fonctions puissances, exponentielle, etc.

par $f(x) = x^x$. Par une étude de fonction, montrer que fadmet un minimum sur \mathbb{R}_+^* . Donner la valeur du minimum ainsi que le ou les points en lesquels il est atteint.

2 \(\psi\) Déterminer, lorsqu'elles existent, les limites des fonctions suivantes, aux points indiqués.

1)
$$x \mapsto \frac{\ln x}{x^2}$$
 en $+\infty$. 3) $x \mapsto x^{\frac{1}{x}}$ en $+\infty$.

3)
$$x \mapsto x^{\frac{1}{x}}$$
 en $+\infty$.

2)
$$x \mapsto xe^{\frac{1}{x}} \text{ en } 0^+$$
.

2)
$$x \mapsto xe^{\frac{1}{x}} \text{ en } 0^+$$
. 4) $x \mapsto (1+x)^{\frac{1}{x^2}} \text{ en } 0^+$.

5)
$$x \mapsto x^{-3} \ln(1 + e^x)$$
 en $+\infty$.

6)
$$x \mapsto \exp\left(-\frac{1}{x^3}\right) \times \ln x \text{ en } 0^+.$$

3 $\star\star$ Résoudre dans $\mathbb R$ les (in)équations suivantes:

1)
$$2e^{3x} - 5e^{2x} + 2e^x < 0$$

2)
$$\ln(3-x) + \ln(2) - 2\ln(x+1) > 0$$

3)
$$x^{\sqrt{x}} = \sqrt{x^x}$$

4 \bigstar Résoudre dans \mathbb{R}^2 les systèmes suivants :

$$\begin{cases} x+y = 7 \\ \ln x + \ln y = 10 \end{cases} \text{ et } \begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

Fonctions trigonométriques

5 ****** Simplifier les expressions suivantes :

1)
$$\arccos\left(-\frac{\sqrt{3}}{2}\right)$$

4) $\cos(2\arcsin x)$

5) $tan(2 \arctan x)$

2)
$$\arctan\left(\tan\left(\frac{9\pi}{4}\right)\right)$$

6) $\sin(2\arctan x)$ 7) $\cos^2(\arctan x)$

3) $\cos(2\arccos x)$

8) tan(arcsin x)

6 \bigstar Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

Calculer $\sum_{k=0}^{n} \operatorname{ch}(kx)$. En déduire $\sum_{k=0}^{n} k \operatorname{sh}(kx)$

7 \longleftrightarrow Montrer que la fonction sh : $\mathbb{R} \to \mathbb{R}$ est une bijection. On notera argsh sa bijection réciproque.

- 1) Montrer que la fonction argsh est dérivable sur \mathbb{R} , et calculer sa dérivée. Dresser le tableau de variations de la fonction argsh.
- 2) Montrer que pour tout $x \in \mathbb{R}$,

$$\operatorname{argsh}(x) = \ln(x + \sqrt{x^2 + 1})$$

rentes l'identité:

$$\forall x \in [-1,1]$$
 $\arccos x + \arcsin x = \frac{\pi}{2}$

- 1) On pose $f: x \mapsto \arccos x + \arcsin x$. Dériver f et en déduire le résultat voulu.
- (a) Montrer que pour tout $x \in [-1,1]$, il existe $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $x = \sin y$.
 - (b) En déduire le résultat voulu.

9)★★ Démontrer que :

$$\forall x \in \mathbb{R}_+^* \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

Obtenir une formule similaire pour $x \in \mathbb{R}_{-}^{*}$.

10 \bigstar Soit $a, b \in D_{tan}$ tels que $a + b \in D_{tan}$.

- 1) Rappeler la formule qui exprime tan(a+b) en fonction de $\tan a$ et de $\tan b$.
- 2) En déduire $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)$.

11)***

- 1) Peut-on trouver une fonction $f : \mathbb{R} \to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $f(\operatorname{ch}(x)) = e^x$?
- 2) Peut-on trouver une fonction $f : \mathbb{R} \to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $f(\operatorname{sh}(x)) = e^x$?

12 $\star\star\star$ Résoudre dans \mathbb{R} les équations suivantes :

- 1) $\arccos x = \arcsin(2x)$
- 2) $\arctan(2x) = \arcsin x$
- 3) $\arcsin(\tan x) = x$
- 4) $\arctan x + \arctan(2x) = \frac{\pi}{4}$
- 5) $\arcsin(x+1) \arcsin x = \frac{\pi}{3}$